Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin.
نویسندگان
چکیده
Bacterial cellulose (BC), a three-dimensional fibril, is a natural polymer that can be used for many applications. BC effectiveness may be improved by enhancing surface characteristics contributing to a better physiologic interaction with human and animal cells and to intrinsically present antimicrobial agents. In the present study, gentamicin-activated BC membranes were obtained by chemically grafting RGDC peptides (R: arginine; G: glycine; D: aspartic acid; C: cysteine) using coupling agent 3-aminopropyltriethoxysilane (APTES) followed by covalent attachment of gentamicin onto the surface of the BC membrane network. X-ray photoelectron spectroscopy (XPS) analyses showed that the BC-APTES contained 0.7% of silicon in terms of elemental composition, corresponding to a grafting ratio of 1:12. The presence of silicon and nitrogen in the BC-APTES confirmed the surface functionalization of the BC membrane. Fourier-transform infrared (FTIR) analyses show the formation of the secondary amide as supported by the valence bond C═O (ν(C═O)), a characteristic vibrational transition at 1650 cm(-1) which is particularly intense with the BC-RGDC-gentamicin membrane. Energy-dispersive X-ray (EDX) analyses showed a low level of carbon and nitrogen (C + N) in pure BC but a high level of (C + N) in BC-RGDC-gentamicin confirming the surface modification of the BC membrane by RGDC and gentamicin enrichment. Of great interest, the gentamicin-RGDC-grafted BC membranes are bactericidal against Streptococcus mutans but nontoxic to human dermal fibroblasts and thus may be useful for multiple applications such as improved wound healing and drug delivery systems.
منابع مشابه
Multifunctional bacterial cellulose and nanoparticle-embedded composites
Cellulose, a linear polymer of glucopyranose sugar molecules, is synthesized both by plants and bacteria. The plant-produced cellulose is present along with other compounds such as hemicelluloses and lignin, and has been used historically for a wide variety of applications ranging from paper-making to cosmetics. The cellulose produced by bacteria, on the other hand, is pure and difficult to mak...
متن کاملActivator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes
This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...
متن کاملThe effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity
Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...
متن کاملSynthesis and characterization of optically active polyester thin-film bionanocomposite membrane achieved by functionalized cellulose /silica for gas permeation
Optically active bionanocomposite membranes composed of polyester(PE) and cellulose /silica bionanocomposite (BNCs) are a novel method to enhance gas separation performance. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composite...
متن کاملSynthesis and characterization of optically active polyester thin-film bionanocomposite membrane achieved by functionalized cellulose /silica for gas permeation
Optically active bionanocomposite membranes composed of polyester(PE) and cellulose /silica bionanocomposite (BNCs) are a novel method to enhance gas separation performance. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2014